

NASA

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston, Texas 77058

(NASA-CR-167379) SPACE SHUTTLE AFRSI LARGE-SCALE DEVELOPMENT TEST USING MODEL 117-0 SPECIMENS AND MODEL 81-0 TEST FIXTURE IN THE AMES RESEARCH CENTER 9 X 7 FC01 SUPERSONIC WIND TUNNEL (OS302E) (Chrysler N82-77335

Unclas 00/16 34934

SPACE SHUTTLE AEROTHERMODYNAMIC DATA REPORT

Data Management Services

		• •	

DMS-DR-2504
NASA-CR 167,379

SPACE SHUTTLE AFRSI LARGE-SCALE DEVELOPMENT TEST
USING MODEL 117-Ø SPECIMENS AND
MODEL 81-Ø TEST FIXTURE IN THE
AMES RESEARCH CENTER 9x7-FOOT
SUPERSONIC WIND TUNNEL
(0S302B)

J.G.R. Collette
Rockwell International
Space Transportation Systems Group

Prepared under NASA Contract Number NAS9-16283

bу

Data Management Services
Chrysler Huntsville Electronics Division
Michoud Engineering Office
New Orleans, Louisiana 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number: ARC 97SWT 503-1

NASA Series Number: OS302B

Model Number: 81-0, 117-0

Test Dates: 28 August to 3 September, 1981

Occupancy Hours: 32

FACILITY COORDINATOR:

J. J. Brownson Ames Research Center Mail Stop 227-5

Moffett Field, CA 94035

Phone: (415) 965-5647

PROJECT ENGINEERS:

J.G.R. Collette (ACO7,x4939) - Test
C.L. Berthold (ACO7,x4620) - Test
J.M. Rivin (AB70,x4949) - Analysis
C.L. Stevens (AB97,x4640) - Analysis
G.N. Periard (ACO7,x4803) - Analysis
Rockwell International
Space Transportation Systems Group
12214 Lakewood Blvd.
Downey, CA 90241

DATA MANAGEMENT SERVICES:

Prepared by: Liaison - S. R. Houlihan Operations - G. R. Lutz

ipproved.

5 L. Giyan, manager

Concurrence:

N. D. Kemp, Manager Data Management Services

Chrysler Huntsville Electronics Division/Michoud Engineering Offices assumes no responsibility for the data presented other than reproduction and distribution.

SPACE SHUTTLE AFRSI LARGE-SCALE DEVELOPMENT TEST
USING MODEL 117-Ø SPECIMENS AND
MODEL 81-Ø TEST FIXTURE IN THE
AMES RESEARCH CENTER 9x7-FOOT
SUPERSONIC WIND TUNNEL
(OS302B)

by
J.G.R. Collette
Rockwell International
Space Transportation Systems Group

ABSTRACT

An experimental investigation (OS302B) was conducted in the NASA/Ames
Research Center (ARC) 9x7-foot Supersonic Wind Tunnel from August 28, 1981
through September 3, 1981. The purpose of the test was to subject
large-scale specimens of Advanced Flexible Reusable Surface Insulation
(AFRSI) to Space Shuttle Orbiter ascent aerodynamic pressure gradient
loadings and turbulence levels for time durations equivalent to 100
missions with a scatter of four (400 missions).

The test articles were AFRSI quilted blankets of varying thicknesses, configured with a heavy or a light silica cloth covering, in patterns duplicating the joining designs to be employed on various areas of the Orbiter vehicle. All three specimens survived the full simulation times without damage.

(THIS PAGE INTENTIONALLY LEFT BLANK)

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INTRODUCTION	3
NOMENCLATURE	5
REMARKS	7
CONFIGURATIONS INVESTIGATED	8
INSTRUMENTATION	11
TEST FACILITY DESCRIPTION	12
TEST PROCEDURES	13
DATA REDUCTION	14
REFERENCES	15
TABLES	
 MODEL 117-Ø TEST SPECIMEN IDENTIFICATION-OS30 II. INSTRUMENTATION LOCATION, MODEL 81-0 FIXTURE- III. INSTRUMENTATION LOCATION, MODEL 117-0 SPECIM IV. OS302B RUN SUMMARY 	-OS302B 17

MODEL FIGURES

INDEX OF MODEL FIGURES

Figure		Page
1.	Model 81-∅ Test Fixture, General Arrangement (OS302B)	22
2.	Typical Flow Field and Pressure Distribution (Model 81-0)	23
3.	Spacer/Shims Arrangements (OS302B)	24
4.	Model 117-Ø AFRSI Test Specimen Assembly	25
5.	Specimen Pattern Layout Sketches	26
6.	Instrumentation Location, Model 81-Ø Fixture (OS302B)	27
7ae.	Typical Data Output (OS302B)	28
8.	Post-Test Photographs of AFRSI Specimens	
	a. Specimen IA-L, Run 3b. Specimen 3E-H, Run 2c. Specimen 4A-H, Run 4	33 34 35

INTRODUCTION

Advanced Flexible Reusable Surface Insulation (AFRSI) is presently under consideration as a potential replacement for the Low-Temperature Reusable Surface Insulation (LRSI) tiles on the Space Shuttle Orbiter Vehicle. The AFRSI is a quilted blanket consisting of silica fiber felt insulation material with a quartz fabric outer mold line (OML) and a glass fabric The quilting is done with quartz thread inner mold line (IML) lining. The blanket IML is bonded stitched through the three layers of material. to the skin of the vehicle while the OML face is exposed to the high pressure gradients, fluctuating acoustic pressures, and wind shear stresses attendant to atmospheric flight. The blankets are pliable, but individual fibrous elements are hard and brittle, and susceptible to damage, especially Therefore, the durability of various AFRSI where they cross each other. configurations in the presence of turbulent airflows requires investigation.

The purpose of this test was to subject large-scale specimens of AFRSI to orbiter flight test (OFT) ascent aerodynamic pressure gradient loadings and turbulence levels for time durations equivalent to 100 missions with a scatter of four (400 missions).

The test was conducted in the NASA/ARC 9x7-foot supersonic wind tunnel from August 28, 1981 through September 3, 1981. Three runs were completed during 32 hours of occupancy.

The test articles were AFRSI quilted blankets of varying section thicknesses, two configured with a heavy silica cloth face covering and one with a light covering of the same material, applied in patterns duplicating

INTRODUCTION (Concluded)

the joining and closeout designs to be employed on the orbiter wing, the canopy area (forward of the windshield), the OMS pods, the upper elevon and vertical tail areas.

Compression corner flow characteristics with attendant flow separation and unsteady shock patterns were created at specific areas of the specimens by deflecting a flap located at the trailing edge of the pads. The test consisted of sweeping the flap deflection from 30 to 50 degrees at constant Mach number (1.8) and constant dynamic pressure (965 or 1060 psf). These conditions and the life duration times were selected from design shock pressures and local turbulence considerations related to the orbiter areas involved.

Each specimen was instrumented to measure local static pressures at the subsurface (IML) and fluctuating pressures inside the AFRSI insulation material.

This investigation was the second of a 2-phase development test program where the first phase (OS302A) was conducted in the ARC 11-foot transonic wind tunnel and was reported separately (DMS-DR-2469).

This report presents information on the conduct of the test, descriptions of the test fixture, of the specimens, and of the test facility, instrumentation particulars, and a sample of the pressure data collected during the test. Post-test pictures of the specimens are included.

NOMENCLATURE

SYMBOL	MNEMONIC	DEFINITION
$c_{\mathtt{p}}$	CP	Pressure coefficient
DB	DB	Decibel representation pf P_{rms}
М	Mach	Freestream Mach number
P _{ss}	P	Freestream static pressure, psia
P	PL	Local static pressure, psia
PRMS	PRMS	RMS value of the variations from the mean value of the local pressure, psi
Pt	PT	Freestream total pressure, psia
q	Q	Freestream dynamic pressure, psf
R _e	RE	Freestream Reynolds number, per ft
Ts	TS	Freestream static temperature, ^O R
T _t	TT	Freestream total temperature, OR
V_{∞}	VEL	Freestream velocity, ft/sec
Х	X	Longitudinal distance positive, inches aft of specimen frame leading edge
Y	Y	Lateral distance positive, inches right of fixture centerline
$^{\delta}_{ extsf{F}}$	FLAP	Test fixture flap setting, degrees
ρ	RHO	Freestream density, slugs/ft ³

NOMENCLATURE (Concluded)

Other symbology includes

AFRSI Advanced Flexible Reusable Surface Insulation

OML Outer Mold Line

IML Inner Mold Line

TOC Time on Condition

Specimen Identification

CONF Specimen configuration ID code

A and E Specimen pattern identification

L,H Specimen cover fabric weight ("light" or "heavy")

REMARKS

Some difficulties were encountered with pressure tubes being plugged by loose AFRSI felt particles. Those were cleared up but the occurrence suggests that in future tests, 1/16-inch tubing should be employed in lieu of 0.40-inch tubing, in any similar instrumentation of AFRSI specimens.

Minor malfunctions of the static pressure instrumentation were experienced during the test:

- Pressure tap 211 on the test fixture never did function properly.
- 2. Pressure tap 404 on specimen 3E-H was defective as were taps 404 and 603 on specimen 1A-L.

In order to effect savings in operating costs, the specified test time of 50 minutes for specimen 3E-H was accumulated in two segments of 24 and 26 minutes.

All test objectives were met and the three specimens tested survived the full simulation times without damage. Post-test photographs of these specimens are shown in Figures 8a. through 8c.

CONFIGURATIONS INVESTIGATED

Model Description

Model 81-0 (drawing L014-01496) as modified in June 1981 for test OS304B, was employed for this test. The fixture, located in the ceiling of the tunnel, consists of a 12-inch chord flap with a 100-inch span, mounted at the trailing edge of a specimen-holding frame, and a sealed pressure box enclosing the space above the holding frame. The pressure box was vented to the tunnel test section to permit pressure equalization across the test pads.

Deflection of the hydraulically actuated flap produces an upstream pressure disturbance which results in a thickening of the boundary layer. This in turn, deflects the flow from its original direction and creates a reverse flow region near the boundaries in the flap/surface corner. In the area where boundary separation occurs, an unsteady shock wave is formed which gives rise to a large step-type positive pressure gradient and high turbulence levels (see Figure 2). The shape of the pressure distribution and the values of the pressure coefficients (shock strength) in the region of the separation depend on both Mach number and Reynolds number. For a given combination of these two numbers, the flow separation point is determined by the flap angle. For this test, Mach and q were selected to yield shock strengths of 1.79 and 2.11 psi.

A 4.5-inch spacer was used together with shims to bring the leading and trailing edges of the specimen pads flush with the surface of the test fixture. The spacer/shim combinations employed are shown schematically in Figure 3. These were intended to compensate for the 6.77-inch depth

CONFIGURATIONS INVESTIGATED (Continued)

of the supporting frame inside the test fixture.

Test Specimens

The AFRSI blankets consist of silica fiber felt (Q-felt) insulation material with a silica cloth covering and a glass cloth back lining, all quilted together with quartz thread in a one-inch square grid pattern. The quilting is done with a modified lock stitch. The outer covering is made of either of two fabric weights: a "light-cover" which is 0.010 inch thick (7 oz./sq.yard) or a 0.027-inch "heavy cover" (20 oz./sq. yard).

The test pads consisted of framed AFRSI panels (40x24 inches) bonded with RTV to 3/4-inch aluminum support plates (43.0 x 27.5 inches), so that the stitching loops were imbedded in the bonding material. One-inch wide rectangular wooden frames surrounded the AFRSI material. The frame/ specimen interfaces were closed off with aluminum strips which covered the top surface of the frames and extended one inch over the AFRSI material, leaving an exposed AFRSI surface of 36x20 inches. The cover strip extensions were bonded to the top of the specimen material to prevent puffing and possible damage to the blankets. The leading edge thickness of the assembled test pads varied from 1.220 to 1.622 inches. A sketch of a test specimen assembly is shown in Figure 4.

The same alphanumeric scheme (e.g., 3E-H) was employed to identify all the specimens tested in both OS302A and B. The first numeral designated the total configuration. Each of the joining patterns was denominated by a letter from A to E. The last letter identified the type of face covering

CONFIGURATIONS INVESTIGATED (Concluded)

on the specimen: light (L) or heavy (H) cover. A listing of the OS302B specimen identifications together with the orbiter areas each represents is shown in Table I. Sketches of the pattern layouts are shown in Figure 5. The test specimens are described in detail in drawings VT70-095014 and VT70-095016 (Reference 1).

This group of three test pads together with the nine that were tested in OS302A was designated model $117-\emptyset$.

INSTRUMENTATION

The model test fixture and all the specimens were instrumented with static pressure taps and fluctuating pressure transducers. The layouts together with the nominal and actual location coordinates of the instrumentation are shown in Tables II and III and in Figure 6.

Static Pressure

The test fixture was instrumented with 24 static pressure taps: 16 on one side and 8 on the other.

Specimen instrumentation was dependent on the pattern layout: IA-L and 4A-H were each equipped with 35 taps while specimen 3E-H was instrumented with 36. These taps consisted of 0.040-inch OD steel tubing passed through the support plates and protruding above the RTV bonding to the subsurface of the AFRSI material, always penetrating all bond lines.

Fluctuating Pressure

The test fixture was instrumented with six Kulite transducers to measure peripheral fluctuating pressures. Each specimen was also equipped with the same number of Kulites. These were installed to protrude approximately 1/4 inch above the RTV bond line, into the felt insulation material.

TEST FACILITY DESCRIPTION

The 9x7-Foot Supersonic Wind Tunnel is one of the supersonic legs of the Ames Unitary facility. It is a closed-circuit, variable-density, continuous-flow tunnel. The test section is 9 feet wide by 7 feet high by 18 feet long and the nozzle is of the asymmetric, sliding-block type, in which the variation of the test section Mach number is achieved by translating, in the streamwise direction, the fixed contour block that forms the floor of the nozzle. The temperature is controlled by after-cooling. Dry air for use in the circuit is supplied from four 30,000 cubic-foot spherical tanks. The tunnel drive motors and compressor also serve the 8 by 7-foot tunnel. The motors have a combined output of 180,000 horsepower for continuous operations or 216,000 horsepower for one hour of operation.

TEST PROCEDURES

All testing was conducted at a constant Mach number of 1.8 and constant dynamic pressure (965 or 1060 psf). After setting the tunnel conditions, the trailing edge flap on the fixture was deflected to 30 degrees and held at that angle for two minutes. The flap angle was then increased by five degrees and held in this new position for the same length of time. This procedure was repeated for each flap angle up to 50 degrees. After completing this first flap angle sweep, the flap was returned to 30 degrees and a second cycle similar to the first was started. The procedure was repeated until the total test time specified for the specimen was accumulated.

A summary of the runs completed including the test conditions and the timeon-condition for each specimen is shown in Table IV.

DATA REDUCTION

Standard tunnel equations were used to compute all tunnel conditions.

Local static pressure data were reduced to standard coefficient form,

$$C_{p} = (P_{\ell} - P_{\infty}) \times 144/q$$

RMS fluctuating pressure data were reduced to coefficient form and to DB form,

DB = 10
$$\log_{10} \left[\frac{P_{RMS \times 10}^9}{2.9007} \right]^2$$

These data were recorded continuously on magnetic tape and analyzed by Rockwell's Vibration and Acoustics unit (Dept. 380).

A typical data output printout is shown in Figures 7a. through 7e.

REFERENCES

1. STS81-0539, "Pretest Information for the AFRSI Full-Scale Development Tests OS302A/B in the Ames Research Center (ARC) 11x11-Ft. and 9x7-Ft. Wind Tunnels Using Model 117-0 Installed in Model 96-0 and 81-0 Fixtures," September 1981.

TABLE I

MODEL 117-0 TEST SPECIMEN IDENTIFICATION 0S302B

DETAIL DWG.	VT70-095016	VT70-095014	VT70-095016
ORBITER AREA(S)	WING; ELEVON; V-TAIL	CANOPY (FWD); OMS	WING: ELEVON: V-TAIL
COVER FABRIC WEIGHT	П	Ħ	×
PATTERN (1)	₹	ы	∀
CONF.	H	က	4

L: LIGHT COVER (7 0Z/SQ YARD)

H: HEAVY COVER (20 0Z/SQ YARD)

(1): SEE FIGURE 5, (DWG. SK-0S302-1)

			•	
X, In.	-1462	14.62		
	STATIC	<u></u>		
2	101	201		
6	103	203		
10	165	205		
/2		207	i	
14	109	209		
- 18		211		
18	113	à√3		
20		215		
22	117	217		
24		219		
26	/2/	22/		
2.8		222		
30		224		
.32		225		
34		227		
36	128	228		
	KULITE			
5		K2!		
9		K22		
13		K24		
17		K26		
23		K29 K31		
29		K 31		<u> </u>
				-
				<u> </u>
	17		- 	
i				

TABLE III. INSTRUMENTATION LOCATION, MODEL 117-0 SPECIMENS

	101	ACTIL	,	1.	.4.5.	I N Cod	CTATIO		_	FIXTURE				
AFRSI FRAME LEADING EXCE $\frac{10}{10} - \frac{1}{10} = 0$ $\frac{1}{10} = 0$		ACTU					STATIC	<u> </u>	1 2	81-0	<u>- </u>		1	
S	INATE:	COORDIN	ATES	:N	RD:	COOR			_	: FDGF	LEADING	DAME	EDEI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	¥	Y			×	NU.	v	7 ->:0	. 1		•••	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$: 8,9	9.9	9.0		.0	10 .	304		-			1 %		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.1	17.4			.5	17.		ידר	1					
	9.1	25.1	1	L	.0	25.	312	↓ → 2						
Ac9 17.5 17.6 A12 25.0 25.0 S04 10.0 3.0 10.0 S09 17.5 17.5 S04 17.5 17.5 S04 17.5 17.5 S12 25.0 25.0 S7 O607 S7 S87 O607 S7 S87 O607 S87 S89 A09 309 S99 G09 Tc9 S89 A09 309 S10 O O O O O S10 O O O S11 O O O S12 O O O S13 O O O S14 O O O S15 O O O S16 O O O S17 O O O S18 O O O S18 O O O S19 O O O S10 O O O S10 O O O S10 O O O S11 O O O S11 O O O S12 O O O S13 O O O S14 O O O S15 O O O S16 O O O S17 O O O S18 O O O S19 O O O S10 O O O S10 O O O S11 O O O S11 O O O S12 O O O S13 O O S14 O O O S15 O O O S15 O O O S17 O O O S18 O O O S19 O O O S19 O O O S10 O O S10 O O S10 O O O S10 O O O S10 O O S10 O O O S10 O	6.2		60	,	·0	10.0	404		7	4 - 8	G 601			
	6.3				٠5	17.5			' i i	ι0		KI		1
C C C O609C O C C C C O609C O C C C C C C C C C C C C C C C C C C	<u> </u>	25.0		_	0	25.0	412	1			0602	1		•
O C C O O O C O C O C O C O C O C O C	1 3.3		3.0	1	.0	10.0	504							1
O C C OLOGO O	3.2		+	ļ	-5	17 3					.0603	K2,		
.87	: 2,9		_!				512	1 1		0.6			\ 0	0
.87	1 00		0.0					11	04	04 464 30	0605 50		B C4	904
ST	-0.7			.					1		0006	/ K3 1	`	1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>			•		+		1 1	7	/ .87			7	.8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0		\dashv							/		KA.		
O O O O O O O O O O O O O O O O O O O	0.1			_					ol:	0 6	0500	ر ر ب	\odot	
	0.0		_					11	60	9 409 30	50	769		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.0			_				1 1	İ		410			
	1 0/3						n .	1 1			~			1
0	0,0							1 1			×2611	As.		
	1 0.0							1 1				/_ '	_	١.,
	1-0.	25.4								2 412 31	04.0	112		0
REYOGIS GIA 28.0 28.1 615 29.5 29.7 616 32.5 32.6 617 35.5 35.4 704 10.0 - 3.0 10.0 709 17.5 17.2 712 25.0 70.2 712 25.0 70.2 71.2 25.0 71.3 71.2 25.0 71.3 71.2 25.0 71.3 71.3 71.2 25.0 71.3 71.3 71.2 71.5 71.3 71.3 71.5 71.5 71.3 71.5	-0.1	26.7						1 1	\Box	`	0613	, ,		
.87 O616 615 29.5 32.6 .87 O616 617 35.5 35.4 704 10.0 -3.0 10.0 709 17.5 17.2 712 25.0 7.5 713 25.0 7.5 709 17.5 17.3 714 715 715 715 715 715 716 717 717 717 718 718 718 718 718 719 719 718 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 719 710 719 719	, 0.	28.1						1			0614	Ke.		
.87 O616	, 0.0	29.7		I				1			0613	•••		1/
704 10.0 3.0 10.0 70.0 70.0 17.2 70.0 17.2 70.0 17.2 70.0 17.2 70.0 70	0,1				ء	32.	616	11		\				
	0.		7	1	. 5	35.	617	1 1	1		0616		8 7	1.
T1Z 25 C V 25.0 \$04 1C.0-6.C 10.2 \$09 17 S 17.3 \$12 25.0 \$25.	- 3.5		<u>-3,0</u>	<u> </u>				1 1					-	
	<u>-3.</u>		1:	<u>:</u>			709	1 1	-		0617			
17.3 S12 25.6 25.0 904 10.0 - 9.0 9.9 909 17.5 17.5 NUMBER NOMINAL ACTUAL 17.5 K1 5 -0.75 4.9 -0.9 17.5 K2 9 9.1 -0.75 17.4 -0.7	- 2,										,			
H2 S12 25.0 25.0 9.9 9.9 17.5	-5.		-6.C	_=	, ()	16.		 						<u> </u>
QQ4 QQC QQQ 17.5 17.	- 6, -6,				_ک_	17		J						
Y Y Y Y Y Y Y Y Y Y	-8.	9.0	-66	- -	ج	75		بهإ			<u> </u>			
KULITE LOCATIONS NUMBER NOMINAL ACTUAL X Y X Y K1 5 -0.75 4.9 -0.9 K2 9 -0.75 -0.75 K3 /3 /3.2 -0.7 K4 17 /7.4 -0.7 K5 23.5 23.4 -0.75 K4 29 29.0 -0.7			7,0				1707							
NUMBER NOMINAL ACTUAL X Y X Y KI 5 -0.75 4.9 -0.9 K2 9 9.1 -0.75 K3 13 13.2 -0.7 K4 17 17.4 -0.7 K5 23.5 23.4 -0.75 K1 29.0 -0.7			+	-;		2/5				5	CATIONS	F	Ø 1 1 1 1 1	
X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X X						1	1 716		ru 🛦					
K1 5 -0.75 4.9 -0.9 K2 9 9.1 -0.75 K3 13 13.2 -0.7 K4 17 17.4 -0.7 K5 23.5 23.4 -0.75 K1 29 29.0 -0.7				1				Y	Ť				***	HUME
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1				-0.9	7				-+-	b 1
K3 /3 - /3.2 -0.7 K4 /7 - /7.4 - 0.7 K5 23.5 23.4 - 0.75 K6 29.0 -0.7		<u> </u>		-						9.1	1		-1-	
K4 17 17.4 - 0.7 K5 23.5 23.4 - 0.75	+			1				-0.7			 - 		-+-	Ry DY
KS 23.5 23.4 -0.75	-i	 		1		1			_		T ⁻ 1 ⁻	17	一十	
29.0 -0.7		 		+			1	-0.7	<i>{</i>]	23.4			1	
		 		.		↓	!	-0.7	⊈ ہے	29.0				
	1	 		+		1	I		}_	1				
				+		 								
		+		+		+	 						$\bot \Gamma$	
		+		+		1	 							

3		E-	н	81-0	9×7		STATIC	HOMI	VAL	ACT	JAL
							TAP	COORD	INATES	COORD	INATE
	SIPK	•	LEADING		. •		NO.	×	Y	×	! v
-10		Y :	0 1		FI 0	×	301	2.5	5.5	2.5	5.
			<u></u>		 	10	302	5.5	1	5.5	5
					77	2	303	8.5		8.5	: 5
401	0	t = .	45	0301	1:1		304	11.5.		11.5	5
			K I	•	1'1		305	/3.0		13.3	. 5
403	-0		YKI	0302			306	14.5		14.3	5
	_						307	16.0		15.7	5.
403	0		y K2	0303			308	17.5		17.6	5
11	•		Υ –				309	19.0		18.7	رَدُ :
404	0			0354	111		310	26.5	:	20,6	j 5.
405	_	•	Y K3	0305			311	23.5	. 1	23,5	5
4	-		ī	_			312	25.0		24.8	5.
405		· · · · · · ·	1	0306	┥!!		3(3	26.5		265	57.
407		Y	K4	7050			314	28.0		27.3	5
408		,	ł	@ 3 oB			315	29.5		29,5	5
409	0	سے، ر	.45	0 3 09			316	31.0		31.0	<u> </u>
1 410	0	.45	د4،	0 310			317	32.5		32.5	: 5
1			K5				318	35.5		35.5	: 5
1 411	0	Y		O 311			401	2,5	- 5.5	2.4	-5
412				0312			402	5.5		5.3	<u> </u>
1 412			ļ	0313	1:1		403	8.5		8.4	1-5,
1 4:4]	0314			404	11.5		11.5	<u> </u>
•					4111		405	13.0		13.2	-5
415			Y K 6	0315	_	į	406	14.5	<u> </u>	14.2	<u> 5.</u>
416		<i>?</i> ,3	2	्र इ.ट	1111		407	16.0		15.6	-5.
417	0 /	RAMP		0317	1111		408	17.5		17.5	<u>-ير-</u>
	•	CMIT		_			409	19.0	<u> </u>	18.7	<u>- 5.</u>
1 418	0			0318	1:11		410	<u> </u>	<u> </u>	20.5	-5.
			ſ		1111		411	23.5		23.4	-5.
<u> </u>			i		7 7 1 1	*	412	25.0		24.7	- 5,
							413	26.5	<u>' </u>	26.5	<u>-2</u>
						412	राव	28.0	: 	27.7	-5.
					.—		412	29.5	; 	29.5	-5,
	= =	167	1 AT: 04: 5				416	131.0_	-	31.0	- S.
			ATIONS				417	32.5	`	35.5	-5.
NUMBER		MINA		ACTU	AL		418	35.5	· •	+ 23,2	
	X			X .	.2					1	i
<u> </u>	5		<u>c</u>	5.2	, 2		· · · · · · · · · · · · · · · · · · ·	 		 	.
<u>K2</u>	9		<u></u> 2	<u>9.2</u> 13.1	T : 2		l — — —		 		1
<u>K3</u>	13		_0 -c.75		.3				1 .		
K4_	47				, 2				:		
K5	23		0.75	29.5	1 0						ī
<u>K6</u>	- 47	5	<u> </u>	1 -	+				ĺ		1 .
				 -	1	-			i		1
		-+		 	1		 -		1		
		+		 	1						<u>.</u>
				 	+				!	4	

SPECIM	EN PATTERN			<u> </u>				
4	A-H	81-0	9×7	STATIC	NOMINAL	\Box	ACTU	AL
<u> </u>			TAP	COORDINAT	ES	COORDI	NATES	
AFRS I	FRAME LEADING	EXE —		NO.		—		
<u>-</u> 10 -	Y = 0 1	/ /	H	×	XY	_	X	Y
			-	0 304	10.0 9.	0 1	10.1	9.2
T				309	17.5		17.5	9.0
	O 601		7 1 1 1	2 312	25.0	+	25.4	9.0
1 1	KI	t = .87	1111	404	1006	- +	17.4	6.2 5.7
1	Y0602			409	25.0		25.1	5.7
	•		1:11	504	10.0 3.0	, 	9.9	
	K2_0603		ו ויג	509	17.5 1	- 1	17.5	
100	0 06240	06		512	250		25.4	
1 9:4 80	4 704 0605 50	4 404 30	4 1	601	2.5.0.	0	2.3	2
	K3 40 606		1:11	662	5.5		5.1	0
87	•	.87		603	8.5		8,7	3
	0601		[]]	604	10.0		10,0	3
	K4 70608		111	605	11.5		11.5	0
909 609	0 0 0	0 0 409 309		606	13.0		12,9	0
1 100		703 700	1111	667	14.5		14.4	0
1	6610			608	16.0		16.1	
	A			609	17.5		17.4	
	X54Q611			610	20.5	 ∔	20,5	
10.0	\0 0 0x20	<u>,</u> 0,_0		611	23.5		23.5	
1 912 81	712 0613	2412 312	4	612	25 c	\dashv	25,1	.3
11 /	064		1:11	613	26.5	-+	26.6	.3
	K640615			1014	28.0		29.1	.3
1/	_		1111	615	32.5		32.9	, 2
,87	0616		$A \cap A$	616	35.5		35.8	.3
i I				704	10.0 -3.	0	10.2	-3.0
<u> </u>	0617			709	17.5. 1	<u> </u>	17.6	- 2.7
1	0 5 ,		1111	717	25 6	_	24,6	-3.0
1			┚╬╋╌╬	804	16.0-6.	c	10.0	- 6,4
<u></u>	!		ー	804	17 5 1		17.5	-6.1
				6.5	25 c		25.1	- 6.2
				42 904	10.0 -90	C	9.8	- 8.9
				909	17.5		17.5	- 9,0
	TE LOCATIONS			9,2	250 1		25.1	- 9.1
NUMBER	NOMINAL	ACTU						
	XYY	X	Y			-+		
KI	5 -0.75	5,2	-1,1		 			
K2	9	4.3	9		<u> </u>	+		
K3	<u>/3</u> -	13.4	16					
K4	17	16.8	6		 	-+		
KS	23.5	23.8	-1.0			-+	 I	
KE	29 1 -	28.8	1= 17	_				•
· 		 -	·	1	<u> </u>			
		1	 	1				
		 	1		1			
			1					

TABLE IV

OS302B RUN SUMMARY - AFRSI LARGE-SCALE DEVELOPMENT TEST ARC 9x7

		9	NOMBER	RUN
DEG	50			
I NOI	45			
FLAP DEFLECTION DEG	40			
AP DF	30 35			
FI	30	 m —	2	7
TIME ON COND	PLANNED ACTUAL	32	20	32
TIME C	PLANNED	32	50	32
) Jsd	965	1060	965
2	Ε	1.8	1.8	1.8
MOTHERM	CONF LGUKA LTON	1A-L	3Е-Н	Н-Ч7

FIGURE 1. MODEL 81-Ø TEST FIXTURE, GENERAL ARRANGEMENT (OS302B)

FIGURE 2. TYPICAL FLOW FIELD AND PRESSURE DISTRIBUTION (MODEL 81-0)

FIGURE 3. SPACER/SHIMS ARRANGEMENTS (OS 302B)

DIMENSION "A" VARIES FROM APPROX .45 TO .87.

"C" THE LE. OF THE SUPPORT PLATE IS 1.05
AHEAD OF STA. X=0.
THE LE. OF THE AFRSI FRAME IS AT X=0.

FIGURE 4. MODEL 117-Ø AFRSI TEST SPECIMEN ASSEMBLY

FIGURE 5. SPECIMEN PATTERN LAYOUT SKETCHES

FIGURE 6. INSTRUMENTATION LOCATION, MODEL 81-0 FIXTURE (OS302B)

		1116	120.09
		0ATE 9011	11000
PAGE 1:9		FLAP 30.79	0000
		8420	0.02
soiefe!		NHB 0.000745	20°0 . 00°0
os sep ejejstos		414	60.0
		RE 4.47	0.05
10-PHESSUITC		67.0	0.00
10 - P.		PT 26#3-4	2 3 4 0.01 0.01 0.01
			30.0
2121		1099.2	13.0
-1 11-97	2 E	NACE CCNF	
1512503 Prel The97 2121	ALNISEL 2121	**************************************	1 PR*S 0.00

0.106 0.026 0.054 0.098 0.185 0.184 0.168

189-1 -154-6 187-7 -126-1 129-6 145-3

129-1 130-0 129-3 123.5 144-4

124.7

0.279 2 6 10 12 14 16 16 2n 22 34 26 2603 0,000 0,000 0,010 0,009 0,017 0,009 0,017 0,031 0,234 0,272 0.002 0.009 0.050 100,0 ATTSAVOZE DUT OF HANGE.

FIGURE 7a. TYPICAL DATA OUTPUT (0S302B)

2 6 10 0.623 0.006 0.012 0.005 C.C. 50.003 0.004 0.004 0.092 0.199 0.249 0.277 0.34 0.32 0.104 0.003 0.003 0.009 0.001 0.009 0.001 0.009 0.001 0.009 0.001 0.001 0.009

				0.269	.C.264
	074		•	0.254	0.262
	· · · · · · · · · · · · · · · · · · ·	120.04	142.1	1.8	0.255
			41	0.226	0.236
O	0 A TE	11 0.00	140.6	134	.208
PAGE 2C	4 C P	10	9an. 1.187.7 -180.0	g 6 7 8 9 10 11 12 13 14 15 16 0.052 0.052 0.053 0.053 0.054 0.194 0.254 0.251 0.254	0.041 0.126 0.175 0.208 0.236 0.255 0.262 0.264
	RHG 0.000143	0,01 0.02	137.7	1110.000	0.124
OS SEP B1433108	<u>0</u>	0,01	130.1	10.00	0.043
0 S S E P	418 603.3	0.03	139.4	620°0	0.027
	4 7 4 6 6 10 10	90.0	148.3	8 9 0	0.052 0.044 0.012 0.0n1 0.027
30k70	8 · 9 · 9	80°C	139.1	4000.0-	0,012
ID-PRESSULTO		0.01	125.4	9 0 0	* 3 0
-	2642.U		125	9.000	250.0
~	9.99	0.01	128.		
7	0 1058•6	2000	191.6	9.014	0.0424
9EG 22	FC N F	0.01	125.0	1 2 9 4 0 °C. 033 0.001	10,050 0.039 0.042&*****
1512503 PF-1 1h-97 2122 RLN15EG 2122	4 A O O O O O O O O O O O O O O O O O O		Œ L	1,033	360.J.

10 0.203 0.203

				•		
					1.0 0.30	0.326
					110.0	0.313
		074			16 0.255	0.315
				143.2	0.5.0	0.110
		E SE SE	12 0.04		14	9.200
		DATE 9011	1100.0	143.7	277	. 273
23		. <u> </u>	10	3.0	~ o	ٽِ س
PAGE 21		FLAP 40.71		♦	0.26	0.24
_		AHG 0.000741	0.02	136.9	110.235	0.232
ojeśęte			\$0.0 00.0	-154.6 136.9 -142.0	10.0	194
soitée ele co		11R	0.03	140.0	0.100	0.134
		RE 4.434	90.0	149.2	0.021	0.00
DEPHESSOUTO		4.0.1 E.0.1			4000	0.052
PABS		-7			• C 10	800
<u>•</u>) ' -	2649.3	0.0	134.1	3. E	0 /6,
			10.0	126.0	0 R00	0
2123		1697.5	6.01	127.5	•	2400
16.	-				0.01	0.0
1 1v	2 3 3 5 C	CCNF	00.0	123.3	20.033	0.038
T812503 Pre1 18-97 2123	RLN 1564 2123	2 A C +	9 7 8	ē.	1 2 3 4 E 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10 10 11 12 13 14 15 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	-1.051 0.438 0.042A****** 0.637 0.092 0.052 0.044 0.134 0.794 0.232 0.262 6.273 0.289 0.310 0.315 0.313 0.326

A)+754V02C U-CO1 U-OO9

FIGURE 7c. TYPICAL DATA OUTPUT (0S302h))

30

					H 6 7 8 9 10 11 12 13 14 19 10 17 0000 0000 0000 0000 0000 0000	0.703 0.143 0.183 0.148 0.829 0.967 0.289 0.310 0.820 0.820 0.888 0.888
		TIME PAD	12	143.0	0.380	0.384 0
		9011 3	11 0 0 0 0 0	143.9 14	2 0,338	0 0.355
PAGE 22		FLAP 04	0000	182.5 1	2 13 314 0.32	310 '0.32
		84C 0.000741	0000 0000 0000	129.8 146.0 -182.5	11 1	0.200 0
cs sep siésatos	•	9.0 10.0	0,01	127.4	10000	196.0
C3 11P		418 605.0	20.0	136.6	0.226	0.129
		RE 4 • 4 34	60.0	190.2	0.140	0.198
\$\$0LT0		£:994	5 0 •08	148.5	0 0.187	3 0,18
SU-PHESSOUTO		2660.0 466.g	6 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	155.6 148.9	90°0 99	03 0.14
			*0°0	36.		
1 2124		1086.1	2.000	128.3	0.016 0	**46+0.0
F-1 18-9	4	# COO	1°C	124.7	1 2 9 4 0.008 0.008	
1512503 PH-1 18-97 2124	2124	1000	0 1 2	ć	1 1,030	160,1
-						

16 0 • 36 5 0 • 36 3

151-503	1512509 PH-1 1N-97 2125	97 2	129	=	ID-PHESSCHTC	151,16		boickels as co	10168310	_	PAGE 23	2					
RLA 2	RLN 1864 2125																
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CGNF		1058.4	ëT 2641-3			* * * * * * * * * * * * * * * * * * *	11A		RHE 0.000140	FLAP 91.29	DATE		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O V d		
2 1 2	1 U•01	9.1	2 0.12 0.19	0.14 0.09		60.0	0.10	40.0	0,14	0,13 0.06	10000	0.09		12000			
ā	131.3	152.	152.1 153.5 150.0	190		149.8	1.001	142.1	191.5	146.9	132.5	1 145.1		142.5			
1 (03)	1 2 1 0.039 0.039 (W 0.0	0.089 0.208 0.348 Q.279 0.275 0.3ng 0.317 0.448		6.2.9	0.275	8 C 6 . O	0.917	19	11 0.354	0.369	12 13 14 19 14 17 0.369 0.401 0.362 0.401	0.383	0.400	1.6 0.382	170.401	18
150,051	2,0.0	96000	IC.051 0.042 0.0964**** 0.341 0.289 0.276 0.369 0.822 0.348 0.354 0.371 C.375 0.381 0.401 0.404 0.401	0.941	0.209	0.276	0.357	0.922	0 - 1 + 6	6.984	0.371	C.375	0.361	0.401	404.0	0.401	0.40

0.012 0.024 0.039 0.201 0.252 0.546 0.310 0.441 0.341 0.360 0.358 0.575 0.400 0.364 0.402 0.415
0.001 0.001 0.088
0.196
0.898
0.339
0.341

FIGURE 7e. TYPICAL DATA OUTPUT (0S302B)

a. Specimen 1A-L, Run 3
Figure 8. Post-Test Photographs of AFRSI Specimens

b. Specimen 3E-H, Run 2Figure 8. (Continued)

c. Specimen 4A-H, Run 4
Figure 8. (Concluded)